Journal of Organometallic Chemistry, 199 (1980) 195–204 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER POLYGERMANE

VIII *. OCTAPHENYLCYCLOTETRAGERMAN (Ph_2Ge)₄, EIN GERMANIUMHOMOCYCLUS MIT D_{2d} -SYMMETRIE

LUDWIG ROSS ** und MARTIN DRÄGER *

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, D-6500 Mainz (Deutschland)

(Eingegangen den 6. Juni 1980)

Summary

The crystal structure of octaphenylcyclotetragermane, $(Ph_2Ge)_4$, has been determined and refined to an R value of 0.046. The symmetry of the molecule approximates D_{2d} . The Ge₄ ring is nearly planar and square (angle of pucker 3.9° , Ge—Ge 246.5(5) pm). The 8 phenyl groups (Ge—C 196.2(10) pm) are arranged in two distinct sets ("parallel" touching and perpendicular to the Ge₄ ring) which exchange their positions in solution. The packing of the (Ph₂Ge)₄ molecules in the crystal resembles a cubic body centred sphere packing. The homocyclic series (Ph₂Ge)_n with n = 4, 5, 6 shows ¹³C NMR signals in CDCl₃ solution monotonic dependent on the endocyclic Ge—Ge angles.

Zusammenfassung

Die Kristallstruktur der Titelverbindung wurde bestimmt und bis R = 0.046 verfeinert. Das Gesamtmolekül besitzt näherungsweise D_{2d} -Symmetrie. Der Ge₄-Ring ist nahezu planar quadratisch (Faltungswinkel 3.9°, Ge—Ge 246.5(5) pm). Die 8 Phenylgruppen (Ge—C 196.2(10) pm) stehen in zwei unterschiedlichen Sätzen ("parallel" streifend und senkrecht zum Ge₄-Ring), die in Lösung ihre Stellung austauschen. Die (Ph₂Ge)₄-Moleküle packen im Kristall nach Art einer kubisch-innenzentrierten Kugelpackung. In der Reiche der Homocyclen (Ph₂Ge)_n mit n = 4, 5, 6 hängen die ¹³C-NMR-Signale in CDCl₃-Lösung mono-ton vom endocyclischen Ge—Ge—Ge-Bindungswinkel ab.

^{*} Mitt. VII siehe Lit. [1].

^{**} Teil der geplanten Dissertation von L. Ross.

Einleitung

Germaniumhomocyclen $(R_2Ge)_n$ konnten mit den Ringgrössen n = 4, 5, 6und 7 synthetisiert werden [2]. Von diesen Homocyclen ist bisher nur der 6-gliedrige Ring strukturell untersucht; er besitzt sowohl in permethylierter [3] wie in perphenylierter [1,4] Form eine abgeflachte Sesselkonformation. Wir berichten hier über die Konformation des 4-gliedrigen Homocyclus Octaphenylcyclotetragerman (Ph₂Ge)₄.

In Lösung zeigen die perphenylierten Homocyclen $(Ph_2Ge)_n$ unterschiedliche ¹³C-NMR-Signale. Wir vergleichen die chemischen Verschiebungen mit den im Feststoff bestimmten Strukturen der Homocyclen.

Struktur des (Ph2Ge)4

 $(Ph_2Ge)_4$ kristallisiert monoklin in der Raumgryppe $P2_1/c$ (Nr. 14) mit den Kristalldaten (Mo- $K_{\alpha 1}$ -Strahlung λ 70.926 pm): a 2140.1(4), b 1040.0(1), c 2065.7(4) pm, β 115.82(2)°, V 4139 × 10⁶ pm³, Mol.-Masse 907.2 (C₄₈H₄₀Ge₄), Z = 4, d_{ront} 1.46 g cm⁻³, d_{exp} 1.43(2) g cm⁻³, μ 28.5 cm⁻¹.

Die Struktur wurde bis R = 0.046 verfeinert, Tabelle 1 enthält die Lageparameter. Fig. 1 zeigt das gefundene (Ph₂Ge)₄-Molekül. Das Gesamtmolekül besitzt mit guter Näherung D_{2d} -Symmetrie ($\overline{4}2m$): S_4 -Achse senkrecht zum Ge₄-Ring, zwei Symmetrieebenen durch gegenüberliegende Ge-Atome, zwei 2-zählige Achsen durch gegenüberliegende Ge-Ge-Bindungsmitten. Die Tabellen 2 und 3 enthalten die quantitativen Daten zur Beschreibung der Struktur des Ge₄-Rings und der Anordnung der Phenylsubstituenten.

Ge₄-Ring

Der Ge₄-Ring bildet ein nahezu planares Quadrat (mittlere Abweichung von der least squares-Ebene ± 3.0 pm, Faltungswinkel 3.9°). Carbocyclische Cyclobutane sind meist wesentlich stärker gefaltet (Faltungswinkel zwischen 20 und 40° [5]) und auch der analoge Si₄-Ring im (Ph₂Si)₄ und (t-BuMeSi)₄ weicht deutlich von der Planarität ab (Faltungswinkel 12.8° [6] und 36.8° [7]). Der mittlere Ge-Ge-Abstand von 246.5 pm ist geringfügige gegenüber den Ge-Ge-Abständen im homologen (Ph₂Ge)₆ (246.0 [1,4]) aufgeweitet.

Die weitgehende Planarität des Ge₄-Rings resultiert wahrscheinlich aus dem Bestreben von Bindungen an Ge-Atomen einer Winkelverengung unter 90° auszuweichen. In den planaren 4-gliedrigen Cyclen C₂Ge₂ (im (Me₃SiCHGeCl₂)₂ [8]) und Fe₂Ge₂ (im [(CO)₄FeGeEt₂]₂[9]) mit Germanium in 1,3-Stellung ist

Fig. 1. $(Ph_2Ge)_4$ -Molekül mit eingezeichneten näherungsweisen Symmetrieelementen (Zuordnung der C-Atome zu den einzelnen Phenylgruppen s. Tabelle 3).

der Winkel am Ge-Atom auf 94, bzw. 105° aufgeweitet mit der überraschenden Folge, dass die nicht-bindenden 1,3-Ge…Ge-Abstände nur noch 270, bzw. 305 pm betragen. Im (Ph₂Ge)₄ betragen die nicht-bindenden 1,3-Ge…Ge-Abstände 348 pm.

Beim Germanium ist das nicht-bindende Ge…Ge-Potential offensichtlich "weicher" als das Bindungsverengungspotential; beim Kohlenstoff gilt eher der umgekehrte Trend [10,11].

Anordnung der Phenylsubstituenten

Alle 8 Phenylsubstituenten stehen isoklin zum Vierring und symperiplanar untereinander. Bei Betrachtung der Phenylgruppenverdrillung können zwei Sets unterschieden werden: 4 Phenylgruppen (Ph(1), Ph(4), Ph(5) und Ph(7)) sind "parallel" streifend zum Vierring angeordnet, während die anderen 4 Phenylgruppen (Ph(2), Ph(3), Ph(6) und Ph(8)) nahezu senkrecht zur Vierringebene stehen. In beiden Sätzen sind die 4 Phenylgruppen durch die in Fig. 1 angegebene näherungsweise S_4 -Achse ($\overline{4}$) untereinander verbunden. Eine qualitativ völlig gleichartige Ausrichtung der Phenylgruppen findet sich auch im analogen (Ph₂Si)₄ [6], obgleich dieser Vierring stärker gefaltet ist und in einer völlig anderen Kristallstruktur kristallisiert. Die in Fig. 1 gezeigte Phenylgruppenverdrillung ist demnach optimal für diesen Verbindungstyp, so dass auch in Lösung mit einer D_{2d} -Anordnung der (Ph₂Ge)₄-Moleküle gerechnet werden kann.

TABELLE 1

LAGEPARAMETER DES (Ph₂Ge)₄ MIT STANDARDABWEICHUNGEN (anisotrope U der Ge-Atome 0.03-0.05; isotrope U der C-Atome 0.04-0.10)

Atom	x	y	Z
	0.78800/(2)	0.0059(1)	0.00576/6)
	0,10050(0)	0.0252(1)	0.05576(0)
Ge(2)	0.10//0(0)	0.1015(1)	0.20185(6)
Ge(a)	0.308/6(6)	0.0278(1)	0.27687(0)
C(1)	0.31131(3)	-0.0383(1)	0.10310(0)
	0.1207(3)	-0.1205(5)	0.0065/6)
C(2)	0.1494(0)	-0.2008(12) -0.3079(13)	-0.0000(0)
C(3)	0.1003(7)	-0.3072(13) -0.2204(14)	-0.0356(7)
C(4)	0.0404(7)	-0.3304(14)	-0.0230(7)
C(5)	0.0235(7)	-0.2304(14) -0.1439(11)	0.0137(7)
C(7)	0.1739(5)	0.1567(9)	0.0330(0)
C(8)	0.2128(6)	0.1507(5)	0.0225(5)
	0.2128(0)	0.2000(12)	-0.009(6)
C(3)	0.2020(0)	0.2509(14)	0.0786(7)
C(10)	0.1322(7)	0.3302(14)	
	0.1123(1)	0.2331(14)	-0.0465(6)
C(12)	0.1233(6)	0.1394(11)	-0.0400(0)
	0.1176(3)	0.0192(10)	0.2311(3)
	0.1306(3)	-0.0578(11)	0.2070(3)
0(15)	0.0802(0)	-0.1530(12)	0.2873(6)
C(16)	0.0175(0)		
C(17)	0.0025(7)	0.0233(14)	0.2299(7)
C(18)	0.0557(6)	0.0808(12)	0.2130(6)
C(19)	0.1751(5)	0.2885(10)	0.2147(5)
C(20)	0.1395(6)	0.3607(12)	0.1546(6)
C(21)	0.1286(8)	0.4987(15)	0.1619(8)
C(22)	0.1555(8)	0.5435(15)	0.2276(8)
C(23)	0.1911(8)	0.4843(15)	0.2904(8)
C(24)	0.2016(7)	0.3380(14)	0.2853(7)
C(25)	0.3201(5)	0.1055(10)	0.3484(5)
C(26)	0.3008(5)	-0.0732(11)	0.4028(6)
C(27)	0.3056(6)	-0.1675(12)	0.4552(6)
C(28)	0.3289(6)	-0.2882(12)	0.4512(6)
C(29)	0.3469(6)	-0.3204(12)	0.3978(6)
C(30)	0.3439(5)	-0.2292(11)	0.3446(5)
C(31)	0.3764(5)	0.1631(10)	0.3291(5)
C(32)	0.3701(5)	0.2857(12)	0.2986(6)
C(33)	0.4207(6)	0.3812(12)	0.3356(6)
C(34)	0.4739(6)	0.3516(12)	0.4003(6)
C(35)	0.4818(6)	0.2320(13)	0.4319(6)
C(36)	0.4301(5)	0.1344(11)	
C(37)	0.3731(5)	0.0665(9)	0.1374(5)
C(38)	0.4342(6)	0.1147(11)	0.1896(6)
C(39)	0.4784(6)	0.1941(13)	0.1680(7)
C(40)	0.4569(6)	0.2220(13)	0.0953(7)
C(41)	0.3940(6)	0.1754(12)	0.0427(0)
C(42)	0.3512(5)	0.0361(11)	U.U040(3) 0.1551(4)
C(43)	0.3305(4)	-0.2203(9)	U.1551(4)
C(44)	0.3894(5)	-0.2576(11)	U.1468(5)
U(45)	0.4020(6)	-0.3910(12)	U.1427(b)
C(46)	0.3581(6)	-0.4833(11)	U.149U(b)
C(47)	0.3005(6)	-0.4474(12)	0.1578(6)
C(48)	0.2867(5)	0.3144(11)	0.1623(5)

vinkel ±0.1°, der Ge	–Ge-Ahstände ±0.2 pm, der Bindu	ngswinkel ±0.1°)		
Abstünde von der oesten Ringebene (pm)	Ringfaltung (°)	Ringtorslonswinkel (°)	Bindungslängen (pm)	Bindungswinkel (°)
3e(1)3,0	Ge(1)Ge(2)Ge(3)/	Ge(4)Ge(1)-Ge(2)Ge(3)2.8	Ge(1)Ge(2) 245.8	Ge(4)Ge(1)Ge(2) 89.9
3e(2) +3.0	Ge(1)Ge(4)Ge(3) 3.9	Ge(1)Ge(2)-Ge(3)Ge(4) +2.8	Ge(2)-Ge(3) 247.2	Ge(1)Ge(2)Ge(3) 90.3
Ge(3) -3,0	Ge(2)Ge(3)Ge(4)/	Ge(2)Ge(3)-Ge(4)Ge(1) -2.8	Ge(3)-Ge(4) 247.1	Ge(2)Ge(3)Ge(4) 89.4
3e(4) +3.0	Ge(2)Ge(1)Ge(4) 3.9	Ge(3)Ge(4)Ge(1)Ge(2) +2.8	Ge(4)-Ge(1) 246.1	Ge(3)Ge(4)Ge(1) 90.2
			Ge-Ge 246.5	<u>GeGeGe</u> 90.0
			و هو چې چې چې د د ويد دوه وې چې چې د پې وې	

dar Torelon + Snda + 0 0 í Ş ĉ 111 1

TABELLE 2

5

Phenyl/ Atome	Torsionswinkel (°)	Phenylgruppenverdrillung (°)		Bindungslänger (pm)		Bindungswinkel (°)		
Ph(1)/C(1)C(6)	C(1)Ge(1)-Ge(2)Ge(3) +112.4 Ge(2)C(13)6.9 Ge(2)C(19)130.5	C(2)C(1)-Ge(1)Ge(4) - -Ge(1)Ge(2) - -C(7)C(8)	-49.9 151.8 79.1	Ge(1)C(1)	195,8	C(1)-Ge(1)-Ge(4) -Ge(2) -C(7)	112.4 116.8 107.5	
Ph(2)/C(7)C(12)	C(7)Ge(1)-Ge(2)Ge(3) -119.6 Ge(2)C(13) +121.1 Ge(2)C(19)2.5	C(8)C(7)—Ge(1)Ge(4) - —Ge(1)Ge(2) · ·	-50.6 +51.6	Ge(1)—C(7)	196.1	C(7)Ge(1)Ge(4) Ge(2)	114.0 115.5	
Ph(3)/C(13)C(18)	C(13)Ge(2)Ge(3)Ge(4) +120.4 Ge(3)C(25)0.6 Ge(3)C(31)123.3	C(14)C(13)—Ge(2)Ge(1) —Ge(2)Ge(3) —C(19)C(20)	+84.9 18.5 93.0	Ge(2)C(13)	196.1	C(13)-Ge(2)-Ge(1) -Ge(3) -C(19)	114.4 116.4 105.6	
Ph(4)/C(19)	C(19)Ge(2)Ge(3)Ge(4)116,4 Ge(3)C(25) +122.7 Ge(3)C(31)0.1	C(20)C(19)Ge(2)Ge(1) + Ge(2)Ge(3) +)	+28.3 131.3	Ge(2)C(19)	197.6	C(19)-Ge(2)-Ge(1) -Ge(3)	116.3 113.9	
Ph(5)/C(25)C(30)	C(25)Ge(3)-Ge(4)Ge(1) +114,6 -Ge(4)C(37)131,1 -Ge(4)C(43)3.7	C(26)C(25)-Ge(3)Ge(2) - -Ge(3)Ge(4)) C(31)C(32)	-60.6 163.8 73.8	Ge(3)C(25)	196.2	C(25)Ge(3)Ge(2) Ge(4) C(31)	114.2 118.3 105.7	
Ph(6)/C(31)C(36)	C(31)Ge(3)-Ge(4)Ge(1)120.4 Ge(4)C(37)6.1 Ge(4)C(43) +121.3	C(32)C(31)-Ge(3)Ge(2) - -Ge(3)Ge(4) +	-36,7 +64,6	Ge(3)C(31)	1.701	C(31)Ge(3)Ge(2) Ge(4)	115.4 113.8	
Ph(7)/C(37)—C(42)	C(37)Ge(4)-Ge(1)Ge(2)113.0 Ge(1)C(1) +127.9 Ge(1)C(7) +5.2	C(38)C(37)-Ge(4)Ge(3) + -Ge(4)Ge(1) + - C(43)C(44)	+34.9 135.4 91.0	Ge(4)C(37)	195.9	C(37)-Ge(4)-Ge(3) -Ge(1) -C(43)	113.6 112.1 108.8	
Ph(8)/C(43)C(48)	C(43)Ge(4)Ge(1)Ge(2) +122.1 Ge(1)C(1) +2.9 Ge(1)C(7)119.8	C(48)C(43)Ge(4)Ge(3) + Ge(4)Ge(1) -	+48,0 -46,6	Ge(4)C(43)	195,9	C(43)Ge(4)Ge(3) Ge(1)	116.2 115.0	

ANORDNUNG DER PHENYLSUBSTITUENTEN (Standardabweichungen der Torsionswinkel ±0.6°, der Ge-C-Abstände ±1 pm, der Bindungswinkel ±0.3°)

TABELLE 3

Vom Standpunkt der Raumerfüllung aus lassen sich die $(Ph_2Ge)_4$ -Moleküle als leicht abgeflachte Rotationsellipsoide beschreiben.

Kristallstruktur von $(Ph_2Ge)_4$

Fig. 2 zeigt die Kristallstruktur des $(Ph_2Ge)_4$ in Projektion auf die zx-Ebene mit eingezeichneten y-Höhen der Vierring-Zentren. Entsprechend der geschilderten Gestalt der $(Ph_2Ge)_4$ -Moleküle packen diese nach Art einer kubischinnenzentrierten Kugelpackung mit (8+6)-Koordination.

Thermisch zeigen $(Ph_2Ge)_4$ -Einkristalle keinen Schmelzpunkt, sondern sublimieren bei 285°C unter Zersetzung. Polykristallines $(Ph_2Ge)_4$ ist dagegen stets geringfügig durch Hexaphenyldigerman verunreinigt und schmilzt unterhalb des Sublimationspunktes. Hieraus erklärt sich, dass in der Literatur in der gleichen Arbeit verschiedene Schmelzpunkte für $(Ph_2Ge)_4$ angegeben werden [12].

¹³C-NMR-Signale der Homocyclen (Ph₂Ge)_n

In allen drei Homocyclen $(Ph_2Ge)_n$ (n = 4, 5, 6) zeigt das ¹³C-NMR-Spektrum in CDCl₃-Lösung bei Raumtemperatur nur 1 Satz von Phenylgruppensignalen (Tabelle 4); die beiden im Feststoff gefundenen nichtäquivalenten Phenylgruppensätze in $(Ph_2Ge)_4$ und $(Ph_2Ge)_6$ [4] erfahren offensichtlich bei Raumtemperatur einen schnellen Stellungsaustausch. Dies kann im Falle des $(Ph_2Ge)_4$ eine konzertierte Phenylgruppenverdrehung ohne Beteiligung des Ge₄-Rings

Fig. 2. Kristallstruktur des (Ph₂Ge)₄ in Projektion auf die xz-Ebene mit eingezeichneten y-Höhen der Vierring-Zentren.

Verbindung	δ (C(1))	δ (C(2,6)) (ortho)	δ(C(3,5)) (meta)	δ (C(4)) (para)	Ge—Ge	Ge—Ge—Ge
(Ph ₂ Ge) ₄	137.3	135.5	128.2	128.7	246.5	90.0
(Ph ₂ Ge) ₅	137.7	136.6	127.8	128.1	245.3 [13]	105.2 [13]
(Ph2Ge)6	138.9	137.6	128.3	128.7	246.0 [1,4]	113.5 [1,4]

¹³ C-NMR-PHENYLSIGNALE IN CDCl₃ (δ (ppm) gegen TMS) UND ENDOCYCLISCHE ABSTÄNDE Ge-Ge (pm) UND BINDUNGSWINKEL Ge-Ge-Ge ($^{\circ}$) IN DEN HOMOCYCLEN (Ph₂Ge)_n

sein, während bei $(Ph_2Ge)_6$ der Ge₆-Sessel invertiert mit Vertauschung der axial/ äquatorialen Substituenten. Messungen unterhalb Raumtemperatur waren infolge der geringen Löslichkeit der Homocyclen (nur einige mg/ml bei Raumtemperatur) nicht möglich.

Die beiden letzten Spalten der Tabelle 4 stellen die Ge-Ge-Abstände und Ge-Ge-Ge-Winkel in den Homocyclen den gefundenen chemischen Verschiebungen gegenüber, und Fig. 3 zeigt eine Auftragung der chemischen Verschiebungen gegen den Ge-Ge-Bindungswinkel. Die C(1) und ortho-C-Signale erfahren eine deutliche Tieffeldverschiebung mit Aufweitung der endocyclischen Bindungswinkel, während die *meta*- und *para*-C-Verschiebungen praktisch konstant sind.

Experimenteller Teil

C- und H-Analysen: Mikroanalytisches Labor des Instituts für Organische Chemie der Universität Mainz. Ge-Bestimmung: Neutronenaktivierungsanalyse

Fig. 3. ¹³C-NMR-Chemische Verschiebungem δ in den Homocyclen (Ph₂Ge)_n als Funktion des endocyclischen Bindungswinkels.

TABELLE 4

im Max-Planck-Institut für Chemie, Mainz. Röntgenbeugung: Kappa-Diffraktometer CAD4 der Fa. Enraf-Nonius, Delft/Holland. ¹³C-NMR: Spektrometer WH-90 und WP80DS der Fa. Bruker, Karlsruhe.

Darstellung von Octaphenylcyclotetragerman (Ph₂Ge)₄

Basierend auf einer Arbeitsvorschrift von Neumann und Kühlein [12] wurden folgende optimale Versuchungsbedingungen für die Darstellung des (Ph₂Ge)₄ ausgearbeitet: Zu einer siedenden Emulsion aus 2 g (87 mmol) Natrium in 130 ml Toluol (Ultra-Turrax-Rührer, die Ausbeute hängt entscheidend vom Homogenisierungsgrad des Na ab) werden innerhalb von 30 min 8 g (27 mmol) Ph₂GeCl₂ in 15 ml Toluol zugetropft. Nach 1-std. Kochen unter Rückfluss wird heiss abfiltriert. Beim Abkühlen der Lösung im Eisbad fällt (Ph₂Ge)₄ im Form von sehr kleinen farblosen Stäbchen (Fp. 281°C) aus. Durch Einengen der Toluol-Lösung und Zugabe von Ether fällt weiteres, durch Ph₆Ge₂ verunreinigtes (Ph₂Ge)₄ (Fp. 260–270°C). Nach mehrmaliger Umkristallisation aus Benzol erhält man 1.93 g (31.5%) reines (Ph₂Ge)₄ in Form von farblosen Prismen (Subl. unter Zers. 285°C). Analyse: gef.: C, 63.55; H, 4.63; Ge, 32.0. $C_{48}H_{40}Ge_4$ (907.22) ber.: C, 63.55; J, 4.44; Ge, 32.01%.

Die Literaturausbeute [12] von 33% konnte trotz langer Bemühungen in keinem Fall erreicht werden. Literaturschmelzpunkte [12]: 238–239°C (Kofler-Block), 260–270°C (im Röhrchen).

Kristallvermessung von (Ph₂Ge)₄

Zur Bestimmung der Reflexintensitäten diente ein Quader mit den Abmessungen $0.125 \times 0.55 \times 0.120$ mm, der in eine Glaskapilare eingeschmolzen war. Gemessen wurde mit einem Vierkreisdiffraktometer im $\omega/2\vartheta$ -scan mit monochromatisierter Mo-Strahlung (Graphitmonochromator, λ 71.069 pm). Nach den üblichen Korrekturen und Normalisierung durch *K*-Kurve resultierten 7747 unabhängige $|F|^2$ -Werte (alle Reflexe bis sin $\vartheta/\lambda = 0.59 \times 10^{-2}$ pm⁻¹); 4888 davon hatten eine Intensität von $I < 2\sigma(I)$ und wurden nicht weiter verwendet.

Kristallstrukturbestimmung von $(Ph_2Ge)_4$

Die Lösung der Struktur erfolgte durch eine Patterson- und zwei Fourier-Synthesen. Verfeinert (Vollmatrix) wurde in 8 Cyclen (C isotrope, Ge anisotrope Temperaturfaktoren; 231 Parameter bei 2859 Observablen) bis zu einem *R*-Wert von 0.046 (gewichteter *R*-Wert 0.059). Im letzten Verfeinerungscyclus waren alle Parameteränderungen $<0.2\sigma$ (Streufaktoren nach [14], Dispersionsfaktoren nach [15], Gewichtssetzung gemäss $w = k/(\sigma^2(F) + g \cdot F^2)$ mit g =0.0025). Versuche zur Lokalisierung von H-Positionen wurden nicht unternommen. Die Berechnungen erfolgten mit Hilfe des Programmsystems SHELX-76 [16] und lokalen Programmen [17] (Zeichnungen: Programm PLUTO78 [18]) auf einer HB-66/80-Rechenanlage im Rechenzentrum der Universität Mainz. Tabellen von gemessenen und berechneten Strukturamplituden und der Temperaturfaktoren können angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Projekt Dr 109/3) und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

- 1 M. Dräger und L. Ross, Z. Anorg. Allg. Chem., im Druck,
- 2 A.L. Rheingold (Ed.), Homoatomic Rings, Chains and Macromolecules of Main-Group Elements, Elsevier Scient, Publ. Comp., Amsterdam-Oxford-New York 1977.
- 3 W. Jensen, R. Jacobson und J. Benson, Cryst. Struct. Commun., 4 (1975) 299.
- 4 M. Dräger, L. Ross und D. Simon, Z. Anorg. Allg. Chem., im Druck.
- 5 R.M. Moriarty, Topics Stereochem., 8 (1974) 271.
- 6 L. Parkanyi, K. Sasvari und I. Barta, Acta Crystallogr. B. 34 (1978) 883.
- 7 C.J. Hurt, J.C. Calabrese und R. West, J. Organometal. Chem., 91 (1975) 273.
- 8 A.I. Gusev, T.K. Gar, M.G. Los und N.V. Alexeev, Zh. Strukt. Khim., 17 (1976) 736.
- 9 J.-C. Zimmer und M. Huber, C.R. Acad. Sci. Ser. C, 267 (1968) 1685.
- 10 C. Altona und D.F. Faber, Topics Curr. Chem., 45 (1974) 1.
- 11 A. Greenberg und J.F. Liebman, Strained Organic Molecules, Academic Press, New York 1978.
- 12 W.P. Neumann und K. Kühlein, Liebigs Ann. Chem., 683 (1965) 1.
- 13 L. Ross und M. Dräger, in Vorbereitung.
- 14 D.T. Cromer und J.B. Mann, Acta Crystallogr. A, 24 (1968) 321.
- 15 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 16 G. Sheldrick, SHELX-76, Program for Crystal Structure Determination, 1976.
- 17 M. Dräger und G. Gattow, Acta Chem. Scand., 25 (1971) 761.
- 18 Cambridge Crystallographic Database, Crystallographic Data Centre, Cambridge 1978.